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In the use of this method as a setting method the 
main difficulty arises in selecting the reflexions to be 
brought into coincidence. This does not arise with ir- 
regular fragments of known unit cell (e.g. ground 
spheres), and the method may then prove superior to 
others. For example a colleague setting an irregular 
crystal of (?) face-centred cubic ferritungstite to [100] 
repeatedly converged on [111] by trial oscillation pho- 
tographs. We had no difficulty in bringing two pairs 
of 111 reflexions into off-equatorial coincidence by this 
method, thus setting to the required axis. In some 
similar cases it may well happen that the predicted 
position of A in Fig. 1 lies outside the range of the arcs. 
The prediction will then be rather inaccurate owing to 
departures from the approximations above, but should 
suffice to indicate how the crystal should be remounted 
for a further triplet of trial rotation photographs. The 
indication of azimuth is likely to be more accurate than 
that of the inclination. It may be preferable to locate 
another known axis, accessible to the arcs, and derive 
the inclination from this. 

Most workers use trial oscillation (or Laue) photo- 
graphs for normal crystal setting, when using an ir- 
regular fragment. It is well known that recognizing 
badly misset layer lines is a knack, to be acquired by 
practice. The writer derived this method for general 
use before acquiring this knack, to study serendibite 
(Prior & Coom~irasw~imy, 1903; cf. Pertzev & Niki- 
tina, 1959) available as type material in the form of 
rough irregular fragments thought to be triclinic. The 

above method was triumphantly successful at first at- 
tempt, setting a crystal on to an axis displaying equa- 
torial symmetry on even-order, but not on odd-order 
layer lines, by using off-equatorial coincidences. The 

m 

axis proved to be [122] of the reduced all-acute tri- 
clinic cell. 

Subsequent use suggests that this success was partly 
accidental. The difficulty lies in properly selecting the 
reflexions to be brought into coincidence. Choice of 
off-equatorial coincidences if possible will favour set- 
ting to a symmetry axis if any exists. It seems likely 
that extending Fig. 1 to consider more than two re- 
flexions, thus obtaining a consensus, offers best chance 
of success. The method used in these circumstances is 
simple and offers as much chance of quick success as 
trial oscillation photographs, but for general setting of 
irregular fragments, the method of Brooker & Nuf- 
field, while more elaborate, is more certain. However, 
where the unit cell of the irregular fragment is known, 
the present method offers many advantages over other 
recommended photographic methods. 
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The Decomposition of an Anisotropic Elastic Tensor 
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The classical theory of invariants asserts that there exists a finite integrity basis whose elements are 
polynomials of strain components and are invariant under the group of transformation defining each 
symmetry class of a crystal. By constructing a strain energy function made up of the elements of an 
integrity basis for a certain symmetry class, we derive a tensor basis which spans the space of elastic 
constants for crystals of this symmetry class. Introducing systematically new elements of the integrity 
basis into the construction of the strain energy function, we construct five hierarchies of orthonormal 
tensor bases which span the space of the second-order elastic constants of all crystal systems. Any 
elastic tensor of rank four possessing certain crystallographic symmetry may be decomposed into a 
sum of tensors of increasing symmetry. From this representation of an anisotropic elastic tensor, the 
tensor of any given symmetry, not only the isotropic one, nearest the given tensor can be read off 
immediately. Bases which span the space of elastic constants of orders higher than the second may 
be computed in a similar manner. Such computations can be carried out by a computer. A FORMAC 
program of 7090/94 IBSYS has been written to obtain the elastic constants of the second and the 
third order for each class of a crystal. 

1. Introduction 

In an investigation of the physical properties of an 
anisotropic body, one sometimes begins with the cor- 

responding properties of an isotropic body having the 
same geometry and proximal constitutive physical rela- 
tions, and for which some knowledge may be obtain- 
able with relative ease. It may then be possible to 
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determine properties of the anisotropic body by the 
method of perturbation. Ways of defining and con- 
structing the isotropic elastic tensor 'nearest' a given 
elastic tensor have been presented by Gazis, Tadj- 
bakhsh & Toupin (1963). In this paper we construct 
orthonormal bases of tensors of rank four which span 
the space of elastic tensors possessing certain point- 
group symmetry of a crystal. The orientation of the 
Cartesian coordinates (XbXz, X3) conforms to the con- 
ventions in I R E  Standards on Piezoelectric Crystals 
(Institute of Radio Engineers, 1949); namely, 

Monoclinic xzlly, 
Tetragonal, trigonal and hexagonal x3[lz, x~l[x, 

Orthorhombic and cubic XII[X, Xz[[y, X3[lz, 

where (x ,y ,z)  are the natural axes of symmetry of the 
crystal. 

General procedures for the construction of linearly 
independent tensors of rank 2N, N =  2, 3 , . . .  possessing 
given symmetry, are presented in § 2. By means of these 
tensors, orthonormal bases of tensors of given sym- 
metry can be constructed and are given in § 3. The 
elements of the orthonormal bases of tensors of rank 
four are exhibited in both tensor and abbreviated 
matrix indices. The correspondence between the tensor 
indices and matrix indices is as follows: 

Tensor indices: 11 22 33 23,32 31,13 12,21 
Matrix indices: 1 2 3 4 5 6.  

For the elastic stiffness tensor, we set 

civet = CMN (i,j, k, l=  1,2, 3 and M, N =  1 ,2 , . . . ,  6). 

However, for the elastic compliance tensor s~j~t, factors 
of 2 and 4 are introduced as follows: 

SiJlcl m S M N  when both M and N are 1, 2 or 3 ,  
2sijel = SMN when either M or N is 4, 5 or 6 ,  
4StjgZ=SMN when both M and N are 4, 5 or 6.  

Consequently, the matrix elements in § 3 must be mul- 
tiplied by the factors 2 and 4 according to the above 
schemes. 

To illustrate the method of decomposition, in § 4, 
the elastic stiffness tensor of quartz is decomposed into 
a sum of tensors of increasing symmetry. From this 
representation of an anisotropic elastic tensor, the 
tensor of any given symmetry, not only the isotropic 
one, nearest the given tensor can be read off imme- 
diately. 

2. Invariant tensors 

When a perfectly elastic crystal, initially stress-free, is 
deformed either isothermally or adiabatically to a final 
stressed state, the strain energy if" is a function of state. 
Furthermore, IT" is invariant under the finite group of 
transformations, G, which defines the symmetry class 
of the crystal. For the purposes of this paper, it is as- 
sumed that if" is expressible as a polynomial in the 

strain components Eij. Accordingly, if I la~jll is an ele- 
ment of G, and E~j=a~kajtEkz,* then it is required that 

I~(E~j) = I~(E~), (1) 

for every Ilaijll in G and all values of E~. A classical 
result of the theory of invariants (Weyl, 1946) is the 
existence of a finite integrity basis { l , , I 2 , . . . , I x }  such 
that every polynomial function satisfying (1) is expres- 
sible as a polynomial in the elements of the integrity 
basis. Each element In of an integrity basis is itself a 
polynomial in E~j satisfying (1). For the case of an 
isotropic material, for example, an integrity basis has 
three elements. They are polynomials of the first, sec- 
ond and third degree in Eij, respectively, and may be 
chosen as follows: 

I = t r  (gij)=Eii=E11 + E22+ E33 

II=½[EuEz-Ei:Ei:] 
=(Ea,Ez2+ E22E33 + E33E,,)-(E~2 + E~3 + E~,) 

Ill =det (Eij)-- ~[E~IEj:Ek~- 3EuEjkE~j (2) 
+ 2E~:E:~Ekd 

= ElxE22E33 + 2E12E23E3x 2 2 - (ExlE23 + EzzE3, 

+ fzzEh) 

Smith & Rivlin (1958) have determined the integrity 
basis for invariant functions of Eij for each of the crys- 
tallographic point groups. Their results are summarized 
in Tables 1 and 2 for the purposes of the presentation 
of this paper. Table 1 gives the number of elements 
of an integrity-basis for each crystal class together with 
the number of the second- and third-order elastic con- 
stants. Table 2 gives some additional elements of poly- 
nomials of the first, second and third degree which are 
linearly independent of I, II and III of equations (2) 
as well as among themselves, together with the sym- 
metry classes for which it is an invariant. 

The second-order, th i rd-order , . . . ,  elastic constants 
are tensors of ranks four, s ix , . . . ,  etc., and are defined 
and denoted by 

1, 
cijkz = ~Ei~E~tJ IIE~JlI=II011 ' 

f ~3~" 1 (3) 
C~j~mn= t~E~j~E~Er~nI IIE~JII=II011 ' 
. . . . .  , etc. 

These quantities are symmetric in the following pairs 
of indices, (i,j), (k,l),  (m,n) and (ij, kl), (ij, mn), (kl, mn). 
In particular, c~jk~ is called the elastic stiffness tensor. 
By choosing elements from Table 2 in addition to ele- 
ments of (2), we shall form strain energy functions IT" 
as polynomials of second and third degree in Eij. Since 
polynomials of degree greater than three in the integrity 
basis do not contribute to the elastic tensors of ranks 

* The summation convention on the double indices of 
tensors is understood throughout this paper. 
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T a b l e  1. Number o f  elastic constants and number o f  elements in an integrity basis for  each crystal class 

Crystal Class symbols 
systems Sch6nflies International 

Triclinic ~ CI 1 
C, T t 

Monoclinic 

Orthorhombic 

Tetragonal 

Trigonal 

Hexagonal 

Cubic 

Isotropic 

C2 2 
Cs m 
C2h 2/m 

D2 222 
C2v mm2 
D2h mmm 

C4 4 
$4 Z~ 
C41~ 4/m 
D4 422 
C4h 4mm 
D2a ~2m 
D4n 4/mmm 

C3 3 
C3i 
D3 32 
Car 3m 
D3a ]~m 

C6 6 
C 3 t~ "~ 
C6h 6/m 
D6 622 
C6v 6mm 
D3~ ~m2 
D6n 6/mmm 

T 23 
Tn m3 
O 432 
Ta ~3m 
Oh m3m 

Number  of elements in an Number  of 
integrity basis elastic constants 

1st 2nd 3rd 4th 5th 6th 2nd 3rd 
degree degree degree degree degree degree order order 

6 0 0 0 0 0 21 56 
6 0 0 0 0 0 21 56 

4 3 0 0 0 0 13 32 
4 3 0 0 0 0 13 32 
4 3 0 0 0 0 13 32 

3 3 1 0 0 0 9 20 
3 3 1 0 0 0 9 20 
3 3 1 0 0 0 9 20 

2 4 4 2 0 0 7 16 
2 4 4 2 0 0 7 16 
2 4 4 2 0 0 7 16 
2 3 2 1 0 0 6 12 
2 3 2 1 0 0 6 12 
2 3 2 1 0 0 6 12 
2 3 2 1 0 0 6 12 

2 4 8 0 0 0 7 20 
2 4 8 0 0 0 7 20 
2 3 4 0 0 0 6 14 
2 3 4 0 0 0 6 14 
2 3 4 0 0 0 6 14 

2 2 4 2 2 2 5 12 
2 2 4 2 2 2 5 12 
2 2 4 2 2 2 5 12 
2 2 2 1 1 1 5 10 
2 2 2 1 1 1 5 10 
2 2 2 1 1 1 5 10 
2 2 2 1 1 1 5 10 

1 2 5 3 2 1 3 8 
1 2 5 3 2 1 3 8 
1 2 3 2 1 0 3 6 
1 2 3 2 1 0 3 6 
1 2 3 2 1 0 3 6 

1 1 1 0 0 0 2 3 

1st 
degree 

2nd 
degree 

3rd 
degree 

T a b l e  2. First, second and third degree anisotropic polynomials and their &variant properties 

Polynomials 

E33 
El l  
E31 

El22 + E232 + E3I 2 
E232 + E312 
E12(E1 t - E22) 
E23(E11 - E22) + 2E12E31 
E3 I(E11 -- E22) -- 2E12E23 
E232 
EIEE23 

Ell  E332 + E22Ell z + E33E222 
E11E312 + E22Elz 2 + E33E232 
EllE22E33 
E12E23E3t 
E23E31(Ell - E22) 
E12(E232 - E312) 
E23(E232 - 3E312) 
E23[(E11 + E22) 2 + 4(E12 z -  E22z)] + 8EI1E12E31 
E31 (E312 -- 3E232) 
E31[(E11 + E22) 2 + 4(Elz 2 -- E222)] - 8EllElzEz3 
E23E31(Ell - E22) + E12(E232 --E312) 
3EI2(E11 -- Ezz) z - 4Elz 3 
E12(E312 -- E232) + E23E31(E22 - E33) 
E11[(E11 + 3E22) z -- 12E122] 

Invariance 
Tetragonal, trigonal, hexagonal, orthorhombic,  monoclinic 
Orthorhombic,  monoclinic 
Monoclinic 

Tetragonal, cubic 
Tetragonal, trigonal, hexagonal, orthorhombic,  monoclinic 
Tetragonal (classes 4, ~, 4/m) 
Trigonal 
Trigonal (classes 3, ~) 
Orthorhombic  
Monoclinic 

Cubic (classes 23, m3) 
Cubic (classes 23, m3) 
Cubic 
Cubic, tetragonal 
Tetragonal (classes 4, ~, 4/m) 
Tetragonal (classes 4, ~, 4/m) 
Trigonal 
Trigonal 
Trigonal (classes 3, 3) 
Trigonal (classes 3, 3) 
Trigonal (classes 3, 5) 
Trigonal (classes 3, 3), hexagonal (classes 6, ~;, 6/m) 
Hexagonal (classes 6, ~, 6/m) 
Hexagonal,  trigonal 
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four and six, as is evidenced from (3), such truncated 
polynomials of ~ are sufficient for the determination 
of the second- and third-order elastic constants accord- 
ing to (3). In the following, we shall show the con- 
struction of bases in the space of the second-order 
elastic constants. 

To begin with the isotropic integrity basis (2), the 
second-order elastic constants are obtained from terms 
of 12 and II of (2) in the strain energy if'. By carrying 
out the differentiations of (3), one obtains the following 
two isotropic tensors of rank four, 

f l~a = 6,~g~ + & ~ j ~ . .  (4) 

We now introduce the element 2 2 (E ~2 + E23 + E321) of 
Table 2 into the construction of W. Differentiation of 
the term involving this new element in if" gives the fol- 
lowing tensor of rank four which is invariant under 
the group of transformations characterizing either a 
cubic or a tetragonal crystal, 

~i]/Cl = ((~ 1~3"2 ~- ~2(~Jl)(~/C1~/2 -1 t- ~/¢2~/1) 

-1- (~i2~j3 -1- ~3~3"2)(0/C2~/3 21- g/C36/2) 

Consequently, the three elements (e,fl, re) of (4) and (5) 
constitute a tensor basis for the space of the second- 
order elastic constants of a cubic crystal. With the ad- 
ditional introduction of the elements E33 and ( E ~ +  
E]~) of Table 2, the three additional second degree 
terms E2s, E33(Ell + gz2 + E33) and (EzZs + E2~) in if" 
produce three more tensors of rank four in addition 
to (~,/~, ~); they are 

/ & m  = &j&c3&3 + &3J~3Jet 

+ (&~O~3 + &3O~l)(&~&3 + &3&l) • 

(6) 

Therefore, the six elements (e, fl, z~, ),, g, e) of (4), (5) and 
(6) form a basis for the space of the second-order elastic 
constants of crystals of classes 422, 4ram, 42m and 
4/mmm in the tetragonal system. At the same time, 
the five elements (cqfl, ~, J, ~) form a basis for the space 
of the second-order elastic constants of a hexagonal 
crystal. 

By continuing the computations as outlined above, 
we obtain sixteen linearly independent tensors of rank 
four whose expressions are given in Table 3, together 
with the symmetry classes for which each is an invari- 
ant. Table 4 exhibits the use of these tensors to form 
five hierarchies of bases which span the space of sec- 
ond-order elastic constants for each symmetry class, 
together with the multiplication tables. The inner prod- 
uct of two tensors A~j~a and B ~  which enters the 
multiplication table is defined as (A,B)=A~Ie~B~et. 

Bases which span the space of elastic constants of 
orders higher than the second may be computed in a 
similar manner. The tedious but straightforward alge- 
braic procedures can best be handled by a computer 
using available symbolic manipulation programming 
such as F O R M A C  of 7090/94 IBSYS. In fact, the 
third-order elastic constants listed by Hearmon (1953) 
have been reproduced by a F O R M A C  program but 
with the additional feature of exhibiting hierarchies of 
bases similar to Table 4. As the number of the third- 
order elastic constants is so many, as evidenced in 
Table 1, details of the computer results will not be 
given here. 

3. Orthonormal  bases  

By a linear combination of elements in a basis in 
Table 4, one can, instead, construct an orthonormal 
basis whose elements are (1) mutually orthogonal, i.e. 
(A,B)=0,  if A ~ m # B ~ t ,  and are (2) normal; i.e. 
(A,A) = 1, for elements A and B in the orthonormal 
basis. Twenty orthonormal tensors have been con- 
structed. They are displayed in both their tensor forms 
and their matrix forms in Table 5, together with the 

7C~flcl 

Wight 

(D~jlc~ 

Oi~ct 

TtJIcl 

Table 3. Tensors of rank four and their invariant properties 
Expression 

= &~6kt f 

= (~IgJ2 + gi23Jl) (~/cl ~t2 + ~k2gtl) + (g~2~J3 + gi3~J2) (~k2gl3 + ~/c3612) 
+ (&l~j3 + &3~JD (&l&3 + &3&O 

= ~0~k3313 + ~i3~J3~/¢l 
= (dii2JJ3 + Ji3JJ2) (~/c2~13 + J/c3~t2) + (~il ~J3 + ~i3diJ 1) (Jkl ~t3 + ~/c3~tl) 
= (&13J2 + &2g~l) (&l&3 + &3& l) + (&l g j3 + &36j l) (&l& 2 + &z&l) 

+ (3i2~J3 + ~i3¢5J2) (3/~13t 1 -- 6/c2gt2) + (g i l  ~Jl -- c~i23J2) (~/c2~t3 + 3e3~t2) 
= (&lgJ3 + &36jl) (&l&t - &2&2) + (&13~x - &2g~2) (&l&3 + &3&0 

-- (J*l~2 + g*2J~l) (J/c2~t3 + Je3~t2) -- (J~23J3 + J~3c~2) (J~c~Jt2 + J/c2eSt I) 
= (&a3J2 + &23~0 (&~&~ - &2&2) + (&~n - &2g~2)( &l&2 + &2& ~) 
= J~IgJ 1~/c1~/1 } 
= (~23~3 + g/3~2) (6~/¢2~13 + 3/c3~12) 
= (3¢3~J33/c13tl + 3,1~113/¢3~t3) 

= (~lg~3 + g~33Jl)~/¢3613 + gi3~3(~/cl~t3 + 3/c3~l 1) 
= (&1~3 + &3g¢~)&~&~ + &lSJl(&l&3 + &3&l) 
= (&xg~3 + &3~¢1)&2&2 + &23¢2(&~&3 + &3&~) 

Invariance 
Isotropic 

Cubic, tetragonal, 
Orthorhombic, monoclinic 
Tetragonal, hexagonal, 
Trigonal, orthorhombic, 
Monoclinic 

Trigonal 
Trigonal (classes 3, 3) 

Tetragonal (classes 4,4,4/m) 

Orthorhombic, monoclinic 

Monoclinic 
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symmet ry  classes for  which  each is an invariant .  Table  6 
exhibits  the  five hierarchies  o f  o r t h o n o r m a l  t ensor  
bases which  span the  space of  the  second-o rde r  elastic 
constants .  

A n y  elastic t ensor  of  r ank  four  possessing certain 
crys ta l lographic  symmet ry  may  be d e c o m p o s e d  ac- 

co rd ing  to one  o f  the  schemes in Table  6. Thus  the  
elastic stiffness t ensor  o f  crystals o f  classes 3,5, for  
example ,  can be represen ted  in the f o r m  

VII 

CiJkt = • (c, AK)A~kl ,  (7) 
K = I  

(a) 

(b) 

(c) 

(d) 

y 

gt 

Table 4. Five hierarchies o f  tensor bases and multiplication tables 

I Trigonal (3,~) 
Trigonal (32, 3m,3m) 

_ Hexagonal 
Isotropic --! 

9 6 1 6 
24 2 4 

1 2 
8 

0 0 0 
8 0 0 
0 0 0 
0 0 0 
8 0 0 

16 0 
16 

I Tetragonal (4, 2f, 4/m) 
- - - -  Tetragonal (422, 4mm,-42m, 4/mmm) - - -  

Cubic . . . . .  I 
~- Isotropic --] ] 

I p 
9 6 0 1 6 0 0 

24 12 2 4 8 0 
12 0 0 8 0 

1 2 0 0 
8 0 0 

8 0 
8 

. . . . . . . . . . . .  Tetragonal (4,:g, 4/m) 
- - - -  Tetragonal (422, 4mm, :g2m, 4/mmm) - - .  

- - - - -Hexagonal  
- -  Isotropic - -  

oc p y 5 ;g CO 

9 6 1 6 0 0 0 
24 2 4 8 12 0 

1 2 0 0 0 
8 0 0 0 

8 8 0 
12 0 

8 

II .... 
Orthorhombie 

- - - -  Tetragonal (422, 4mm, ~2m, 4/mmm) - -  
Hexagonal 

Isotropic --] 

Monoclinic 

0 2 u z 

9 6 1 6 0 0 1 2 0 0 0 0 0 
24 2 4 8 12 2 0 4 0 0 0 0 

1 2 0 0 0 0 0 0 0 0 0 
8 0 0 0 2 0 0 0 0 0 

8 8 0 0 4 0 0 0 0 
12 0 0 4 0 0 0 0 

1 0 0 0 0 0 0 
2 0 0 0 0 0 

4 0 0 0 0 
8 0 0 0 

4 0 0 
4 0 

4 
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(e) 

Table 4 (cont.) 

Orthorhombic Monoclinic 

I-----  Tetragonal (422, 4mm, ~2m, 4/mmm) - -  
Cubic . . . . . .  

It 
a 0 2 tt r ff 

9 6 0 1 6 0 1 
24 12 2 4 8 2 

12 0 0 8 0 
1 2 0 0 

8 0 0 
8 0 

1 

2 0 0 0 0 0 
0 4 0 0 0 0 
0 4 0 0 0 0 
0 0 0 0 0 0 
2 0 0 0 0 0 
0 4 0 0 0 0 
0 0 0 0 0 0 
2 0 0 0 0 0 

4 0 0 0 0 
8 0 0 0 

4 0 0 
4 0 

4 

Name 

Table 5. Orthonormal tensors of rank four, their matrix representations and their invariant properties 

Symmetry Tensor 
classes 

A I Isotropic A,m I = ½cqj~t 

AII 

A c 

Isotropic 
1 

A~m II= 61/~ [3flij~t-2~,j~t] 

Cubic 1 
Tetragonal Aij~t c = [5rc,~k~ 
Orthorhombic 2 - ~  
Monoclinic - 3flim + 2~ij~z] 

Tetragonal 
Hexagonal 1 
Trigonal Acmnl=  ~ [15ytj~z 
Orthorhombic - P~m - oc~jkz] 
Monoclinic 

A H I  

Tetragonal 
Hexagonal A~jlct H2 = ~2 [9&m 

h H2 Trigonal - 15y,m +fl ,m 
Orthorhombic - 5~,m] 
Monoclinic 

Tetragonal 
Hexagonal AIjkt Ha = ¼[2e#la 

A H3 Trigonal - & m  + 3y,j~t 
Orthorhombic -fl~m + 0c~m] 
Monoclinic 

1 
Tetragonal AtHct TH = -2~/2 [27rij~t 

A TH Orthorhombic 
Monoclinic - eijla - &jlct + 3yi~t 

- f l t m  + cti~t] 

Matrix (111000) 
1 1 1 0 0 0 
1 1 1 0 0 0 

AzJI=½ 0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

l 4 - -  --2 0 0 0 1 --2 2 2 0 0 0 
1 - -2  - -2  4 0 0 0 

Alj I I=  6~5 0 0 0 3 0 0 
0 0 0 0 3 0 
0 0 0 0 0 3 

I 
- 2  1 1 0 0 0 1 1 - -2  1 0 0 0 

1 1 1 - -2  0 0 0 
A i j C =  

V 0 0 0 1 0 0 
30 0 0 0 0 1 0 

0 0 0 0 0 1 

- 3  - 1  - 1  0 0 0 1 1 - 1  - 3  - 1  0 0 0 
A I j  HI - 1  - 1  12 0 0 0 

°V3 0 0 0 - I 0 0 
0 0 0 0 - 1  0 
0 0 0 0 0 - I  

I 
- 3  - 5  4 0 0 0 ) 

5 - 3  4 0 0 0 
A H H 2 =  x_~ 4 4 0 0 0 0 

0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 (_11oooo) 
1 --1 0 0 0 0 

AIjH 3 =¼ 0 0 0 0 0 0 
0 0 0 I 0 0 
0 0 0 0 I 0 
0 0 0 0 0 --I  

( - 1  1 O O O O 1 O 1 --1 0 0 0 0 
1 0 0 0 0 0 0 A I j T H  = 

-2-1/2 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 1 
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Name 

A T C l  

ATC2 

ATC3 

A T E T  

ATR1 

A Ta2 

Avn 

A VIII 

AIX 

A x 

Symmetry 
classes 

Tetragonal 
Orthorhombic 
Monoclinic 

Tetragonal 
Orthorhombic 
Monoclinic 

Tetragonal 
Orthorhombic 
Monoclinic 

Tetragonal 
(classes 
4,74,4/m) 

Trigonal 

Trigonal 
(classes 3,7) 

Orthorhombic 
Monoclinic 

Orthorhombic 
Monoclinic 

Orthorhombic 
Monoclinic 

Monoclinic 

Table 5 (cont.) 

Tensor 

1 

+ ½ram - ½/hm] 

1 
A~:~:c2 = 2Vg [3&m 

-- 6y~Ikt - n~lkt 

1 
AUlct TC3--- 21/6 [3e~m- 2ntm] 

1 
At]klTET = -21/2 cotl~z 

A~]kl T R1 --- ¼~]Icl 

AIJk.l TR2 = ¼glf]IcZ 

1 
A~]~t TM = ~ [2OIik~ 

+ ½n,.ua + 7*.~g~ 
-½P,m] 

A,lgz vIII = ½[2o'~lkt 
- &m + 2?u~z] 

1 
A~mIX= 2~2- [20~m-eo~d 

1 A~jk~ x = ~ -  l~m 

A I j T C l  --- l 
1/6 

Matrix 

A I j T C 2  --_ .A_ 
2~/3 

I 
- 1  0 0 0 0 0 1 0 - 1  0 0 0 0 

0 0 2 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

I 0 - 2  1 0 0 0 1 - 2  0 1 0 0 0 
1 1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 

AIjTC3= ~21/--6 0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 - - 2  

0 0 0 0 0 1 1 0 0 0 0 0 --1 
AtjTET = 1 0 0 0 0 0 0 ........ 

21/2 0 0 0 0 0 0 
0 0 0 0 0 0 
1 --1 0 0 0 0 

0 0 0 1 0 0 ) 
0 0 0 --1 0 0 

AzjT m = ¼ 0 0 0 0 0 0 
1 --1 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 0 

I 0 0 0 0 1 
0 0 0 0 - 1  

Azj~,R2 =¼ 0 0 0 0 0 
0 0 0 0 0 
1 --1 0 0 0 
0 0 0 --1 0 

0) 
0 
0 

- 1  
0 
0 

I 0 0 0 0 0 0 1 • 0 0 0 0 0 0 
1 0 0 0 0 0 0 

A I j I X  = ~ 0 0 0 1 0 0 
0 0 0 0 --1 0 
0 0 0 0 0 0 

I 0 0 0 0 0 0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 

AtaX = 2]/2 0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 1 0 0 

I 0 0 1 0 0 0 1 0 0 - 1  0 0 0 
AiavnI = ½ 1 - 1  0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

1 0 0 0 0 0 1 0 - 1  0 0 0 0 
1 0 0 0 0 0 0 

AxaVII = --~ 0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 



280 T H E  D E C O M P O S I T I O N  O F  A N  A N I S O T R O P I C  E L A S T I C  T E N S O R  

Name 

A X I  

AXII 

AXlII 

Table  5 (cont . )  

Symmetry Tensor Matrix 
classes 

t 0 0 
o 0 

Monoclinic Aim x~ = {piye~ A z,, -xI = ½ 0 0 0 0 
0 0 
0 0 (oo 
0 0 

Monoclinic Aim xII = ½~m A zJ T M  = ½ 0 0 0 0 
0 0 
0 1 (oo 
0 0 

Monoclinic A~flct XII I  = ½~i.Ucl A idXii I =½ 0 0 
0 0 
0 1 
0 0 

0 0 0 0 \ 
0 0 0 0 ) 0 0 1 0 
0 0 0 0 
1 0 0 0 

0 0 0 0 , 

0 0 1 0 \ 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 \ 
0 0 1 0 ) 0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

(a) 

(b) 

(c) 

(d) 

(e) 

Tab le  6. F i v e  h i e rarch ie s  o f  o r t h o n o r m a l  bases  

A I AII AIII Air  A v AVI AVlI AVlII AIX A x 

A I All An1 AH2 AH3 A~R1 A~2~2 
- -  Isotropic --I 

Hexagonal . . . . . . . . . . . .  
Trigonal (32, 3m, 3m) .. . . . .  

Trigonal (3,~ 

AXI AXlI AXlII 

A I All A c ATCl ATC2 ATC3 ATET 
- -  Isotropic --I | 

Cubic 12 
Tetragonal (42 , 4mm, 7~2m, 4 /mmm) - -  i 

Tetragonal (4, ~[, 4/m) i 

A I All An1 AHZ An3 
- -  Isotropic --) | 

Hexagonal 
Tetragonal (422,4mm,~2m,4/mm) - -  

Tetragonal (4, ~, 4/m) - 

ArU ATeT 

i 

A I All Anl AH2 An3 A T n  
- -  Isotropic --I 

Hexagonal - - (  
- -  Tetragonal (422, 4mm, 2~2m, 4 /mmm) - - - -  

Orthorhombic 

AVII AVm AIX 

I 
I 

....... Monoclinic 

h x AXI AxII AxIII 

A I All A c ATCl A~'C2 ATc3 AvII AVlII 
- -  Isotropic --I 

Cubic 
Tetragonal (422, 4ram, 7~2m, 4 /mmm) -- - 

Orthorhombic . . . . . . . . . .  
Monoclinic 

AiX AX AXI AXii AXm 

where  AK, K = I ,  I I , . . . , V I I  are the o r t h o n o r m a l  basis 
accord ing  to Table  6 (a), and  (c, A n) is the  inner  pro- 
duc t  o f  cty~t and  A~k ~. Likewise,  the  elast ic stiffness 
t ensor  of  classes 4,4 and  4 / m  crystals  m a y  be repre-  
sented in the same fo rm as (7) bu t  wi th  A K chosen  to 

be the  o r t h o n o r m a l  basis  accord ing  to e i ther  (b) or  
(c) of  Tab le  6. 

In  order  to faci l i ta te  the c o m p u t a t i o n  of  inner  pro-  
ducts  of  an  a rb i t r a ry  elastic stiffness t ensor  c~j'~a a n d  
an  e lement  of  an  o r t h o n o r m a l  basis,  Tab le  7 lists the  
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Table 7. Formulas for  the computation o f  inner 
products in terms o f  matr ix  elements 

3 6 3 3 
$1 =z~ CII,  S2=z~  $II ,  S 3 = X  X c l j  

1=1 1=4 1=1 J = l  
(c, A ~) =~$3 

1 
(c, A II) = ~ [3S1 + 6S2 -- $3] 

1 
(c, A c) -- t/Td [4S2- 3S1+ $3] 

(c, A H1) = 1 61/5- [15c33 -- 2S1 -- 4Sz  -- $3] 

(C, A H2) = ~A-~[18(c13 + C23) + 3c33 + 2S1 + 4S2 -- 5S3] 
(c, A H3) = ¼18(c44 + c55) -- 2(c13 + c23) + c33 -- 2S1 - 4S2 + $3] 

1 
(C, A TH) = ~ 2 -  [4C66-- 2(C13 + 2C23) + C33 -- 2S1 + S3] 

- - r  - -  

1 
(C, A ~'cl) = .--7713c33--S1] g o  

Table 7 (cont.) 

3 6 3 3 
S1 ~-X cii  , S2 ~--,~' s i i  , S 3 = X X Clj  

I=1 1=4 I=1 J = l  

1 
(C, A TC2) = - - ~  [3(c13 + c23) + S1 -- $3] 

(C, A TC3) = V2"/-3[C44 + C55 __ 2C66] 
(C, A TET) = 1/2(c16 -- c26) 
(C, A TR1) =2C56+C14--C24 
(¢, h TR2) __ C15 -- C25 -- 2C46 

1 
(C, Z TM) = H [Cll--C22] 

(c, A vIII) = c13 - -  C23 
(C, A IX) = [/2[c44-- c55] 
(C, A x) =2l/2C46 
( c , A  xI) =2c35 
(c, A xII) =2c~5 
(c, A x u I )  = 2c25 

formulas in terms of matrix elements ClJ ,  I~ J =  1,2, . . ,  6. 
However, for the elastic compliance tensor s~jet, the 
coefficients in the formulas must be divided by 2 when 
either I or J of s i j  is 4, 5, 6 and by 4 when both ! 
and J of sz j  are 4, 5 or 6. 

ClJ  : 

I 8.680 0.704 1.191 
0.704 8.680 1.191 
1.191 1.191 10.575 

- 1.804 1-804 0 
0 0 0 
0 0 0 

We now define and denote the norm of ctm by 

Ilcll = ( c ~ m .  c ~ m }  ~ • (8) 

When cijgz is in the space spanned by the orthonormal 
basis {AK}, it is easy to see that 

llcll ={ 2: (c, A K ) )  * . (9) 
K 

The nearest isotropic tensor, denoted by Cakl,° of C~gZ 
is therefore xi 

C ljk ---- ,~. (c, A K)A gkt (10) 
K----I 

4. E x a m p l e  

which has a norm 

According to McSkimin, Andreatch & Thurston 
(1965), the elastic stiffness matrix ci j  at room tem- 
perature of quartz (class 32) is given by 

- 1 . 8 0 4  0 0 \ 
1.804 0 0 

) 
0 0 0 

5.820 0 0 
0 5.820 -1 .804 
0 - 1.804 3.988 

(12) 

in 10 al dyn.cm -2. Using scheme (a) of Table 6, the 
above matrix may be represented in the form 

eI j - -  11.368A I+21-386A II+ 0.457A HI 
+1"870AHZ+3"663AH3--7.216A Tm . (13) 

For an AT-cut quartz plate ( yx l )  35 °, if we orient 
the Cartesian coordinates in such a way that the (xl, Xz)- 
plane lies on the middle plane of the plate and Xz]]X, 
the matrix (12), referred to the new coordinates, be- 
comes 

I 10.250 2"726 -0.803 0 -0.929 
2"726 8.680 -0"831 0 0.388 

-0"803 -0.831 12.992 0 -0 .577 
cxj = 0 0 0 2'895 0 

-0 .929 0.388 -0 '577  0 3.825 
0 0 0 - 0.243 0 

II Ilc011=( z (cO, A~0}*. (11) 
K = I  

In a similar manner, with respect to the tensor cim, 
the nearest tensors of other symmetry classes within 
the" class spanned by the basis {A K} may be read off 
readily from the representation, and their norms may 
be computed according to (9). 

0 t 0 
0 

-0.243 
0 

6-912 

(14) 

which possesses the symmetry of the monoclinic sys- 
tem. This matrix may be represented in either of the 
following two ways according to scheme (d) or (e) of 
Table 6. 
czj = 11-368A I + 21.386A II 

f 3"160A m - 3"549A H2-  3"560A H3 + 5"010A TH 1 

+ ~ t -  "301A +2.880A -4"091A -5"800A 1 c TCl TCZ TC3 

+ 1" 110A vII + 0-027A v I I I -  1"315A I x -  0"689A x 
- 1" 155A x I -  1"859A xlI + 0"776A xlII . (15) 
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The nearest tensors of higher symmetry may be read 
off from equations (13) or (15). In particular, the 
nearest isotropic tensor, C~jkZ,° being an invariant, has 
the following matrix: 

in a perturbation scheme of plane stress problems in 
anisotropic theory of elasticity. 

The author is indebted to Dr R.A.Toupin for his 
criticism and help. 

cO= 

I 10.165 0'601 0.601 0 0 0 t 
0.601 10.165 0.601 0 0 0 
0.601 0.601 10"165 0 0 0 

0 0 0 4.782 0 0 
0 0 0 0 4.782 0 
0 0 0 0 0 4.782 • 

(16) 

Define the number e0 by 

e0=  I l c l l - I I c ° l l  
Ilcll " (17) 

e0 is a scalar constant independent of the rotation of 
the axes. It is a measure of 'nearness' of the nearest 
isotropic tensor. The value of e 0 for quartz at room- 
temperature is found to be 0.054. The use of e0 as a 
perturbation parameter is currently being investigated 
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The Atomic Mechanism of the Body-Centred Cubic to e-Phase Transformation 

BY W. J. KITCHINGMAN 

Metallurgy Department, University of  Manchester Institute of  Science and Technology, 
Sackville Street, Manchester 1, England 

(Received 12 June 1967) 

An atomic mechanism for the body-centred cubic to a-phase transformation is suggested. Atomic 
movements over small distances in the [1 lI]b.o.c, direction take place leading to the formation of a new 
layer structure. The transformation is completed by rotation of alternate layers of hexagons within 
zones related to kagom6 tile structures. The mechanism suggests that certain groups of atoms are more 
strongly bonded in the [1 IT] direction than others. The mechanism also suggests that the body-centred 
cubic phase exhibits partial long range order prior to the transformation. The ductility of B-uranium 
and the brittleness of FeCr and 2NbA1 alloys is discussed in terms of the ordering and coordination 
numbers of the atomic positions in the tr structure. 

Introduction 

The occurrence of the a phase and its properties have 
been reviewed by Hall & Algie (1966). The a phase 

A 

always contains at least one transition group element. 
In alloys it is one of a series of phases occurring with 
the passage from the more open body-centred cubic 
structure to the closer packed hexagonal and face- 

B C A+B +C 
Fig. 1. The a-phase structure described as a layer structure of kagom6 tiles and diamond nets. The outline of the unit cell is 

also shown. 


